Description:

Exceptional Performance and Scalability
The RG-S5750-H Series offers fixed 4 10G fiber ports. Users can flexibly choose 10G fiber or copper ports in various quantities to meet their actual deployment needs. The unparalleled scalability totally supports campus network aggregation of large-sized enterprises, or core deployment of small to medium-sized networks. The series supports MAC address capacity of up to 64K.
IPv4/IPv6 Dual Stack Multilayer Switching
The RG-S5750-H Series provides hardware support for IPv4/IPv6 multilayer switching at line rates, supports distinction and processing of IPv4 and IPv6 packets by hardware, and provides flexible IPv6 network communication schemes for network implementation planning or maintaining the present network status. The switches also support rich IPv4 routing protocols, including static routing protocols, RIP, OSPF, IS-IS, and BGP4, enabling users to select appropriate protocols for network building in different environments. A wide array of IPv6 routing protocols is also available. Such include static routing protocols, RIPng, OSPFv3, and BGP4+, enabling users to select appropriate protocols for upgrading an existing network to IPv6 or building a new IPv6 network.
Virtual Switch Unit (VSU)
The Virtual Switch Unit technology, or VSU in short, enables interconnection of several physical devices by virtualizing them into one logical device. The logical device uses one single IP address, Telnet process, command-line interface (CLI), and enables auto version inspection and configuration. From the user perspective, the benefits are multiplied work efficiency and enhanced user experience of several devices operating at the same. And they only have to manage one device. The VSU technology also offers multiple benefits below:
• Easy management: Administrators can centrally manage all the devices at the same time. It is no longer necessary to configure and manage the switches one by one.
• Simplified typology: The VSU is regarded as one switch in the network. By connection of aggregation link and peripheral network devices, MSTP protocol is unnecessary as there is no Layer 2 loop network. All protocols operate as one switch.
• Millisecond failover: The VSU and peripheral devices are connected via the aggregation link. Upon failure event of any device or link, failover to another member link requires only 50ms.
• Exceptional scalability: The network is hot swappable, any devices leaving or joining the virtualized network cause zero impact on other devices.
Comprehensive Security Policies
The RG-S5750-H Series effectively prevents and controls virus spread and hacker attacks with various inherent mechanisms such as anti-DoS attacks, hacker IP scanning, illegal ARP packets checking and multiple hardware ACL policies.
• Hardware-based IPv6 ACL: Allow coexistence of IPv4/IPv6 users and controls the resources access by IPv6 users (e.g. restrict access to sensitive network resources).
• Industry-leading CPU protection mechanism: The CPU protection policy (CPP) distinguishes the data flows sent to the CPU, which are processed according to their priorities, and implements limitations on the bandwidth rate as needed. In this manner, users can prevent the CPU from being occupied by illegal traffic and protect against malicious attacks to guarantee normal operation of the CPU and switch.
• IP/MAC binding: Implement flexible binding of a port or the system to the IP address and MAC address of users, strictly limiting user access on a port or in the entire system.
• DHCP snooping: Allow DHCP responses from trusted ports only; based on DHCP listening and by monitoring ARP dynamically and checking the user IP address, directly discard illegal packets inconsistent with binding entries to effectively prevents ARP frauds and source IP address frauds.
• IP-based Telnet access control: Prevent attacks from illegal personnel or hacker and strengthen the device security.
• Secure Shell and SNMPv3: Secure Shell (SSH) and Simple Network Management Protocol v3 (SNMPv3) cryptographic network protocol ensure the security of management information. Provides services such as multi-element binding, port security, time-based ACL and bandwidth rate limiting to block unauthorized users.
• NFPP: The NFPP (Network Foundation Protection Policy) enhances switch security. It protects switch processor and bandwidth by totally isolating the attacking sources. Normal packet forwarding and protocol are hence guaranteed.
High Reliability
The RG-S5750-H Series supports spanning tree protocols of 802.1D, 802.1w, and 802.1s to ensure rapid convergence, improves fault tolerance capabilities, ensures stable running of networks and load balancing of links, and provides redundant links.
• Virtual Router Redundant Protocol (VRRP): Effectively ensure network stability.
• Rapid Link Detection Protocol (RLDP): Detect the connectivity of links and whether an optical fiber link is normal from both ends, and supports the loop detection function based on the port to prevent network faults caused by loops generated by the connection of devices such as hubs to ports.
• Ethernet Ring Protection Switching (ERPS) (G.8032): Implements loop blocking and link recovery on the master device. Other devices directly report link status to the master device. Without passing through other standby devices, the failover time of loop interruption and recovery is hence faster than STP. The ERSP’s link failover rate can be completed within 50ms under ideal conditions.
• Rapid Ethernet Uplink Protection Protocol (REUP): When Spanning Tree Protocol (STP) is disabled, the Rapid Ethernet Uplink Protection Protocol (REUP) can provide basic link redundancy through the rapid uplink protection function and provide faster sub second-level fault recovery than STP.
• Bidirectional Forwarding Detection (BFD): Provide a method for upper-layer protocols such as routing protocols and MPLS to rapidly detect the connectivity of forwarding paths between routing devices, reducing the convergence time of upper-layer protocols greatly in the case of changes in link status.
• Exceptional business support performance: Support IPv4 and IPv6 multicast with abundant multicast protocols, e.g. IGMP Snooping, IGMP, MLD, PIM, PIM for IPv6, MSDP, etc. The switches offer multicast service for IPv4 network, IPv6 network, and IPv4/IPv6 co-existing network. IGMP source port and source IP inspection is also enabled to crack down on rouge multicast sources. The series offers rich Layer 3 features (e.g. ECMP) to meet various link planning needs. All products of the RG-S5750-H Series support lightning protection of above 6KV.
• Nonstop PoE (Z-PoE): RG-S5750-48GT4XS-HP-H supports 48-port PoE+ power supply. Since more IoT (Internet of Things) devices depend on PoE (Power over Ethernet) power supply nowadays, Z-PoE (Nonstop PoE) feature is introduced to Ruijie PoE switches. With such feature, the switch can provide nonstop PoE power supply to IP cameras, IP phones and other PD (Powered Device), even when a reboot happens.  So operators can feel free to do maintenance job like firmware upgrade any time.
Abundant QoS Policies
The RG-S5750-H Series offers outstanding multilayer traffic categorization and control for MAC traffic, IP traffic, application layer traffic and so on. The feature achieves traffic policies such as refined bandwidth control and forwarding priority. The series also supports customized QoS features for various applications.
The QoS system, with Diff-Serv as the core, supports a complete set of policies covering 802.1P, IP TOS, Layer 2 to 7 filtering, SP, and WRR.
Software-Defined Networking (SDN)
The RG-S5750-H Series fully supports OpenFlow 1.3. In collaboration with Ruijie’s SDN controller, it forms a large-scale Layer 2 networking architecture with ease. Smooth upgrade of the whole network to a SDN one is also enabled. The switch series hence greatly simplifies the network management and minimizes network deployment savings.
Energy Efficiency
The RG-S5750-H Series adopts next-gen hardware architecture with a highly energy-saving circuit design and component selection. The device achieves a marked reduction in energy consumption. In addition to maximized energy saving, the RG-S5750-H Series also significantly lowers noise pollution. All models in the series deploy variable-speed axial fans, which support intelligent speed adjustment based on the current ambient temperature. All the features enable the switches to work smoothly and reduce power consumption and noise pollution at the same time.
The RG-S5750-H Series also supports auto-power-down mode. When an interface is down for a certain period of time, the system will automatically power it down for extra energy efficiency. EEE energy-saving mode is another feature highlight. The system will automatically turn an idle port into energy-saving mode. When there is a new packet, the system will issue listening streams to the port to resume service.
Easy Network Maintenance
The RG-S5750-H Series supports abundant features such as SNMP V1/V2/V3, RMON, Syslog, and logs and configuration backup using USB for routine diagnosis and maintenance. Administrators can use a wide variety of methods for easier management and such include CLI, web management, Telnet, etc.

Feature:

Product Model
RG-S5750-48GT4XS-HP-H

GE RJ45 port
48

GE SFP port
n/a

10GE SFP+ port
4

Card slot
n/a

Card type
n/a

ETH management port
1

Console port (RJ45)
1

Console port (Mini USB)
1

USB 2.0 port
1

Switching capacity
598Gbps/5.98Tbps

Forwarding rate
132Mpps

MAC table size
64,000

ARP table size
20,000

Jumbo frame
9216 Bytes

Packet buffer
32Mbit

Maximum PoE power budget
1480W (w/ 2 RG-PA1150P-F)

PoE/PoE+ enabled port
48

Standard
IEEE802.3af/at

Dimensions(WxDxH)
440 X 420 X 44mm
440 X 450 X 44mm w/ PG-PA1150P-F

Unit weight
6.1kg

Type
Hot swappable

Redundancy
1+1

AC frequency
50/60Hz

Rated AC voltage
100~240V

Maximum AC voltage
90~264V

Rated HVDC voltage
240V DC

Maximum HVDC voltage
192~288V DC

Rated DC voltage
-36V ~ -72V DC

Maximum power rating
2300W

Idle power rating
70W

Dissipation mode
Air-cooled heat dissipation. Intelligent speed adjustment

Number of fan
3

Airflow
Air flows in from the left and exhausts from the right

Safety
EN 60960-1

EMC
EN 300 386

Emissions
EN 55022, EN55032

Immunity generic
EN 55024

ESD
EN 61000-4-2

Radiated
EN 61000-4-3

EFT/Burst
EN 61000-4-4

Surge
EN 61000-4-5

Conducted
EN 61000-4-6

Power frequency magnetic field
EN 61000-4-8

Voltage dips and interruptions
EN 61000-4-11

Harmonics
EN 61000-3-2

Flicker
EN 61000-3-3

Anti-gas corrosion
GB-T2423.51-2012(Refer to IEC 60068-2-60)

Operating temperature
0 ℃ ~ 50 ℃

Storage temperature
-40 ℃ ~ 70 ℃

Operating humidity
10%~90% RH

Storage humidity
5%~95% RH

Operating altitude
-500 ~ 5000m

MTBF(hours)
451400

Ethernet
Full-duplex, Half-duplex, Auto negotiation, Flow control on interface, Jumbo frames, Link aggregation(IEEE802.3ad, LACP, maximum 8 member ports per AP), 2048 maximum aggregation ports, Load balancing, Broadcast storm control

VLAN
IEEE802.1Q, 4094 VLAN ID, 4094 VLANIF interface, Access mode, Trunk mode, Default VLAN, Port-based VLAN, MAC-based VLAN, Protocol based VLAN, IP subnet-based VLAN, Voice VLAN, GVRP, Super VLAN, Private VLAN, Guest VLAN

MAC
Automatic learning and aging of MAC addresses, Static and dynamic MAC address entries, Interface-based and VLAN-based MAC address learning limiting, Sticky MAC, MAC address spoofing guard

ARP
Static ARP, Trusted ARP, Gratuitous ARP, Proxy ARP, Local proxy ARP, ARP trustworthiness detection, ARP-based IP guard

STP
STP(IEEE802.1D), RSTP(IEEE802.1w), MSTP(IEEE802.1s), 64 MST instances, Port Fast, BPDU guard, BPDU filter, TC guard, TC filter, Root guard, Auto edge, BPDU transparent transmission, BPDU tunnel, VLAN-Specific Spanning Tree(VSST, working with PVST, PVST+ and RPVST)

ERPS
G.8032 v1/v2, Single-ring, Tangent-ring, Intersecting-ring, Load balancing

L2 multicast
IGMP v1/v2/v3 snooping, IGMP filter, IGMP fast leave, IGMP querier, IGMP security control, IGMP profile, MLD v1/v2 snooping, MLD filter, MLD fast leave, MLD source check

QinQ
Basic QinQ, Selective QinQ(Flexible QinQ), 1:1 VLAN switching, N:1 VLAN switching VLAN mapping, TPID configuration, MAC address replication, L2 transparent transmission, Priority replication, Priority mapping

IPv4 unicast routing
IPv4 static routing, RIPv1/v2, OSPFv2, BGP4, MBGP, IS-IS, PBR, VRF, ECMP, WCMP, Routing policies, 12000 IPv4 routing table

IPv6 unicast routing
IPv6 static routing, RIPng, OSPFv3, BGP4+, IS-ISv6, PBRv6, VRFv6, Packet–based load balancing and flow-based load balancing, 6000 IPv6 routing table

IPv6 feature
ND(Neighbor Discovery), 10000 ND entries, ND snooping, 6 over 4 manual tunnel, 6 to 4 auto tunnel, ISATAP, IPv4 over IPv6 tunnel, IPv6 over IPv6 tunnel, GRE tunnel (4 over 6), GRE tunnel (6 over 6), IPv6 extender option head, Manually configure local address, Automatically create local address, 0-64 bit mask, 65-128 bit mask

Multicast routing
IGMPv1/v2/v3, MLDv1/v2, PIM-DM, PIM-SM, PIM-SSM, PIM-DMv6, PIM-SMv6, MSDP, MCE, IGMP proxy, MLD proxy, Multicast static routing, 8000 IPv4 multicast routing table, 4000 IPv6 multicast routing table

DHCP
DHCP server/relay/client, DHCPv6 server/relay/client, DHCP option 43/82/138

MPLS
MPLS labels and forwarding, LSP, LDP, Inter-domain LDP LSP

MPLS L3 VPN
BGP VPN, IS-IS VPN, OSPF VPN

BFD
Single-hop BFD, BFD for IPv4 static routes/OSPF/IS-IS/BGP4/VRRP/MPLS/PBR, BFD for IPv6 static routes/OSPFv3/IS-ISv6/BGP4+/VRRPv6/PBRv6

DLDP
DLDP for IPv4 static routes/OSPF/BGP4/VRRP/PBR

LLDP
IEEE802.1AB 2005, ANSI/TIA-1057, LLDP, LLDP-MED, LLDP-PoE

RLDP
Uni-directional link detection, Bi-directional forwarding detection, Downlink loop detection

VSU
9 VSU(Virtual Switch Unit) stacked members, 80Gbps maximum stacking bandwidth with service port VSL connection, Traffic balancing

VRRP
VRRPv3, VRRP+

REUP
REUP(Ruijie Rapid Ethernet Uplink Protection Protocol) for dual uplink backup, VLAN load balancing

GR
GR for RIP/OSPF/IS-IS/BGP/MPLS L3 VPN/LDP

RNS
RNS test for ICMP/DNS/TCP, Track support for RNS

Stream classification
Classification based on IEEE802.1p/DSCP/TOS

Shaping
Rate-limit on ingress/egress traffic on interface

Congestion avoidance
RED, WRED, Tail drop

Congestion management
SP, WRR, DRR, WFQ, SP+WFQ, SP+WRR, SP+DRR, 8 queue priorities per port

ACL entries
3500 IPv4/v6 rules

ACL type
Standard IP ACL, Extended IP ACL, MAC-extended ACL, Time-based ACL, Expert ACL, ACL80, IPv6 ACL, SVI router ACL, ACL logging, ACL counter, ACL remark, ACL redirection, Security channel, Protected port, Port security

ARP security
ARP check, DAI, Trusted ARP, ARP trustworthiness detection, Gateway-targeted ARP spoofing prevention, ARP rate-limit,

Attack defense
CPP(CPU Protection Policy), NFPP(Network Foundation Protection Policy) guard for ARP/IP/ICMP/DHCP/DHCPv6/ND/Self-defined attack, URPF

IP
IP source guard v4/v6, 3500 IPv4 source guard user capacity, 1500 IPv6 source guard user capacity

DHCP
DHCP snooping, DHCPv6 snooping, DHCP snooping on option 82

AAA
Local, RADIUS, RADIUS v6, TACACS+

IEEE802.1X
IEEE802.1X port/MAC based authentication, Dynamic VLAN and ACL assignment, MAC authentication bypass

Web portal
Ruijie 1st-Gen and 2nd-Gen portal authentication, Portal authentication/accounting, Portal detection and escape

Login
CLI, Console, Telnet, Telnet for IPv6, SSH v1.5/v2.0, SSH for IPv6, SCP, SNMP-based NMS, Web-based UI, Fast deploy(Ruijie Cloud App), Cloud management

File
Multiple boot configuration, Multiple firmware

Network
Ping(v4/v6), Traceroute(v4/v6), sFlow, SNMPv1/v2c/v3, HTTP, HTTPS, RMON(1,2,3,9), CWMP(TR069), Syslog, MIB,

Application
DNS client v4/v6, TFTP Server/Client, TFTP Client v6,  FTP Server/Client, FTP Server/Client v6, NTP Server/Client, NTP Server/Client v6, SNTP, EEE(IEEE802.3az), OpenFlow v1.0, OpenFlow v1.3, Hot patch, Z-PoE (Non-stop PoE)

Mirroring
Many-to-one mirroring, One-to-many mirroring, Flow-based mirroring, Over devices mirroring, VLAN-based mirroring, VLAN-filtering mirroring, AP-port mirroring, SPAN, RSPAN, ERSPAN

Hardware monitoring
Power supply monitoring, Fan status and alarm monitoring